
Quadcover for large deformation simulation

David Desobry

Université de Lorraine, Inria, F-54000 Nancy, France

Abstract

In this paper, we present a method for generating quadrilateral meshes that can withstand large deformations and remain valid
throughout the simulation of hyperelastic materials such as rubber. Our approach involves starting with a CAD description of the 2D
shape, triangulating the model, computing frame fields aligned on the boundaries, and applying a quadcover algorithm. When the
simulation deforms the initial mesh to the point where one of its elements is inverted, our method uses the previous end state of the
simulation to compute a new deformation-aware frame field and produce a deformation-aware quad mesh.

Keywords: Geometry processing, hyperelastic, remeshing, quadcover

Introduction

In recent decades, quadrilateral meshes have been widely used
in deformation simulation software such as numea and others, as
they tend to converge better than unstructured triangular meshes.
These quad meshes have typically been generated using front-
end advancement methods. However, more recently, algorithms
based on frame fields have gained popularity due to their abil-
ity to produce high-quality quadrilateral meshes. In this paper,
we will focus on the quadcover algorithm, which is particularly
effective at generating quadrilateral meshes with a minimal num-
ber of singularity vertices. While frame field based algorithms
have become increasingly robust, they have often been designed
to generate meshes without any human intervention, limiting
their flexibility. In contrast, we propose a method that allows
for greater control over the number and position of singularities,
enabling the generation of quadrilateral meshes that remain valid
through large deformations.

Contributions. In this paper, we propose a modification to
the quadcover algorithm for generating quadrilateral meshes
suitable for deformation simulations using the Numea software.
We describe the changes we made to the quadcover algorithm
to make it compatible with computing quadrilateral meshes
on the initial geometry of a CAD object, and then show that
these improvements can go even further, making a quad mesh
computed with quadcover valid for all geometries of a CAD
model submitted to a deformation simulation.

The paper is structured as follows: Section 1 compares tradi-
tional simulation meshing methods to those used for computer
graphics animations, to which our method is similar. The quad-
cover algorithm and its ability to create quadrilateral meshes are
introduced in section 3. In section 4, we present implementation
details that improve the quadcover algorithm’s robustness when
working on CAD databases that accurately represent what can be
encountered in the world of numerical simulations. Section 5 de-
scribes how we can modify the method described in Section 4 to
produce a quadrilateral mesh that is adaptable to multiple input
geometries rather than just one. In addition, we present an itera-
tion algorithm that alternates between quadrilateral mesh gener-
ation and simulation steps, allowing this quad meshing method
to automatically adapt to the deformation simulation for which it

was designed. Section 6 provides statistics on the impact of the
quad mesh improvements presented in this paper on CAD mod-
els. The results of simulations performed with the Numea soft-
ware on a quadrilateral mesh computed using the fully automatic
process presented in this paper are then shown.

1. Related work

1.1. Typical quadrilateral mesh generation methods for numeri-
cal simulations

Traditionally, quadrilateral mesh generation for numerical
simulation has been done using advancing front methods such
as those proposed by Zhu [1], Owen [2], Lee [3], and Blacker
[4], or by splitting or merging triangular meshes as proposed
by Johnston [5] and Remacle [6]. These older meshing tech-
niques are still commonly used due to their robustness and sim-
plicity of implementation. However, it has been shown that poor
quality quadrilateral meshes can significantly impact the conver-
gence and accuracy of simulation results, particularly in the case
of non-linear deformations [7]. To maintain good mesh quality
despite deformations, previous work has employed remeshing
techniques [1, 8], but these approaches can introduce slowness
and imprecision to the results [8, 9]. In this paper, we aim to
find a quadrilateral mesh that meets all quality requirements and
can withstand deformations without the need for remeshing, us-
ing quad mesh generation techniques from the field of computer
graphics.

1.2. Quadrilateral mesh generation for computer graphics ani-
mations

The problem of generating quadrilateral meshes that can with-
stand deformations during a numerical simulation is similar to
the problem of generating quadrilateral meshes that can adapt
to the steps of an animation sequence. In the field of computer
graphics, several quadrilateral mesh generation techniques based
on global parameterization have been developed, including QEX
[10], Global Parameterization [11], an Approach for Quadran-
gulating Manifold Surfaces [12], Quadcover [13], Integer Grid
Maps [14], Mixed Integer Quadrangulation [15], and Quantized
Global Parameterization [16]. These methods aim to produce
high-quality quadrilateral meshes from an input geometry, and

Preprint submitted to Elsevier August 28, 2023

a survey of quadrilateral mesh generation techniques for com-
puter graphics can be found in [17]. However, to the best of
our knowledge, there is currently no flexible method based on
the quadcover algorithm for generating quadrilateral meshes that
remain of high quality despite deformations during a simulation.
Recent work on quadrilateral mesh generation for animations has
demonstrated that it is possible to adapt global parameterization
techniques to generate high-quality quadrilateral meshes on mul-
tiple input geometries [18, 19], allowing for the minimization of
worst-case quality among all geometries with high robustness.
This motivates the idea that similar methods could be applied
to numerical simulation, as high-quality and adaptable meshes
are needed to compute high deformation simulations without the
need for remeshing steps.

2. Constraints of simulation of high deformation on the input
quad mesh

Non-linear simulations of high deformations refers to a com-
putational method for modeling the behavior of objects that un-
dergo significant changes in shape when they are subjected to
external forces.

In other words, this method is used to predict how an object,
such as a rubber seal, will deform when it is under stress or strain.
The behavior of the object may not be linear, which means that
the response to an external force is not proportional to the force
applied. The method uses complex mathematical models to sim-
ulate the non-linear behavior of the object, allowing engineers to
predict how it will behave in real-world scenarios.

2.1. Simulation method of our study case

In our case we want to study objects subject to highly non-
linear elasticity behaviors. To simulate these objects, it is rec-
ommended to use a material model that can capture large strains
and nonlinearities, such as the hyperelastic model. Also, the nu-
merical method should be able to handle the nonlinearities in the
problem, we use a full Newton method.

Full Newton Method
Given the initial displacement: U0

Iterate until convergence DN L2 and EN satisfied:

1. Calculate the tangent stiffness matrix:

K(Uk)

2. Solve the linear system for the change in displacement:

K(Uk)∆U = R(Uk)

where:

R(Uk) = Fext(t) − F int(Uk)

3. Update the displacement:

Uk+1 = Uk + ∆U

End iteration

Result: Un is the converged solution

The convergence criteria DN L2 and EN we use in our Full
Newton Method are:

Displacement Convergence Criteria (DN L2)
At the kth Newton iteration:

||∆Uk ||L2-average ≤ tolU · ||Ucumul inc||L2-average

where:

Ucumul inc = ∆U1 + · · · + ∆Uk

∆Uk is solution of K(Utotal)∆Uk = R(Utotal)

tolU is selected tolerance (default 1e-3)

||.||L2-average is L2-norm averaged on the # of nodes

Energy Convergence Criteria (EN)
At the kth Newton iteration:

|Ek | ≤ tolE · |E0|

where:

Ek = R(Uk) · ∆Uk

E0 = initial energy at current increment

tolE = selected tolerance (default 1e-3)

2.2. Importance of a well conditioned stiffness matrix

The conditioning of a matrix refers to how sensitive the solu-
tion of a system of linear equations is to changes in the matrix or
the right-hand side vector. A well-conditioned matrix leads to a
stable and accurate solution, while a poorly conditioned matrix
can lead to numerical instability and large errors.

Thus, having a well conditioned stiffness matrix is crucial in
terms of convergence and accuracy of the simulation results. The
more a quadrilateral mesh have elements with 90 degrees angles
(ideally a rectangle) the more the stiffness matrix is well condi-
tioned with a uniform distribution of eigenvalues. Our objective
is that the quadrilaterals of our meshes are shaped liked rectan-
gles in the zones where the external forces are the highest, to
ensure numerical stability and a nice convergence rate of each
Full Newton iteration.

2.3. Guidelines for the construction of a quadrilateral mesh
adapted to this type of simulation

Here are some guidelines for constructing a better possible
quadrilateral mesh for a simulation of high deformation with a
Full Newton method and external forces applied on boundaries:

• Near-orthogonal angles: The quadrilateral elements should
have angles close to 90 degrees to reduce the effect of shear
deformation and minimize the presence of off-diagonal
terms in the stiffness matrix. Elements with near-orthogonal
angles have a better-conditioned stiffness matrix than ele-
ments with non-orthogonal angles.

• Boundary alignment: Alignment with the external force di-
rection applied on the boundaries can improve the stability
of the solution. If the mesh is not aligned with the defor-
mation direction, the element edges can become distorted,
leading to poor element quality and numerical instability.

• Local refinement: A good local refinement should be tar-
geted at regions where the solution is expected to vary

2

rapidly or where high accuracy is required. This could be ar-
eas of high stress, material interfaces, or regions of high de-
formation. More importantly, it is crucial to have high qual-
ity elements (orthogonal and aligned with external forces)
in these high-stress regions even if it means sacrificing the
quality of the mesh elsewhere.

• Consider the computational cost: It is important to balance
the need for accuracy with the computational cost when
choosing the level of refinement in the mesh. A fine mesh
can lead to a more accurate solution, but it also increases
the computational cost of the simulation. The global sizing
of the mesh should be done considering the time step size,
the magnitude of the external forces and the convergence
criteria of the simulation.

3. Quadcover for quadrilateral mesh generation

The quadcover algorithm is a method for generating quadrilat-
eral meshes from a triangular mesh of a 2D domain. The first
step in this process is to compute a frame field, which is a field
of crosses aligned with the boundaries of the domain (see Fig.1).
In addition to providing local orientations, the frame field also
serves as a global segmentation of the domain, with the singu-
larities of the field defining the irregular vertices of the resulting
quadrilateral mesh (see Fig.2). From the frame field, we extract
two vector fields (see Fig.3), which are then integrated to pro-
duce two scalar fields (see Fig.4). The integer isovalues of these
scalar fields are then used to construct the quadrilateral mesh (see
Fig. 5).

3.1. Frame field computation

Figure 1: Computation of a frame field. Frames of boundary triangles are first
fixed to be aligned with their boundary edge, then the frames of the inside trian-
gles are obtained with a least square interpolation.

A 2D orthogonal frame can be represented as a cross, which is
invariant under π/2 rotations. To capture this periodicity, Ray et
al. [20] proposed representing the cross with the vector (X,Y) =
(cos 4θ, sin 4θ), where θ is the angle of the boundary edge. To
obtain a smooth frame field, we first fix (X,Y) on the boundaries
and then interpolate X and Y within the 2D domain (see Fig. 1).
The optimization problem is to make the values of X and Y for
neighboring triangles t and t′ as similar as possible, while also
satisfying the constrained values on the boundaries. Using the
notation N(t) to represent the neighboring triangles of a triangle
t, the optimization problem can be formulated as:

arg min
X,Y

∑
t

∑
t′∈N(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
(
Xt′

Yt′

)
−

(
Xt

Yt

)∣∣∣∣∣∣
∣∣∣∣∣∣2 (1)

Figure 2: Singularities of a frame field are vertices of the output quad mesh that
have a valence not equal to 4.

We use a least squares method to solve this optimization prob-
lem, just like we do for all other optimization problems in this
article. From the computed Xt and Yt values, we can calculate
the angle θt of the cross field in all triangles of our input triangu-
lar mesh using the following formula: θt = 1

4 tan−1(Y
X).

3.2. Integration with quadcover

Figure 3: A frame field is brushed into two vector fields

The notation used in the following refers to the halfedge data
structure notation of [21]. Specifically, if h is a halfedge that
originates from the ith corner of a triangle t: gh corresponds to the
(x, y) position of the ith vertex of t, h′ = next(h) is the halfedge of
t that follows h in the counter-clockwise direction, h′ = opp(h)
is the halfedge from the adjacent triangle that is opposite to h
and that shares the same vertices. H(t) is the set of the three
halfedges of a triangle t.

The quadcover algorithm [13] provides an integer parametriza-
tion of a 2D domain from a frame field input. Given a trian-
gular mesh T and two vectors per triangle at, bt obtained from
the frame field (as shown in Fig 3), we will compute two deci-
mal values per triangle corner (represented by the halfedge that
originates from this corner): uh and vh. These values uh and
vh define two decimal functions u and v, which are linear per
triangle, on the entire triangular mesh domain : let p be a
point of a triangle t ∈ T with barycentric coordinates λ0, λ1, λ2,
we define the functions u : p 7→ λ0uh0 + λ1uh1 + λ2uh2 and
v : p 7→ λ0vh0 + λ1vh1 + λ2vh2 . These functions will be used
to create our quadrilateral mesh: the points of our output quad
mesh will be placed where u(p) and v(p) are integer values.

To create the quadrilateral mesh, we connect the points on the
surface where either u(p) or v(p) is an integer. Since u and v are

3

Figure 4: Each vector field a and b are integrated to produce respectively the
scalar fields u and v.

linear per triangle, the integer lines in every triangle form seg-
ments that start and end on different edges. If the integer lines
of u and v are continuous on all edges, meaning all adjacent tri-
angles have integer lines that are aligned, then all output points
are connected and form the desired quad mesh. The quadcover
algorithm ensures the alignment of integer lines across all edges
of the triangular mesh by enforcing two types of constraints, as
described in the bellows paragraphs.

Seamless map constraint. :

A map defined on a 2D domain of a triangular mesh
(
x
y

)
7→(

u(x, y)
v(x, y)

)
is said to be seamless if the length of any halfedge h ∈

H(t) is the same that its opposite halfedge opp(h) ∈ H(t′) for
the u and v functions :

(
unext(h) − uh

vnext(h) − vh

)
=

(
0 1
−1 0

)ph
(
uopp(h) − unext(opp(h))
vopp(h) − vnext(opp(h))

)
. (2)

where ph ∈ {0, 1, 2, 3} are integer values determined after the

frame field step, that minimize :

∣∣∣∣∣∣
∣∣∣∣∣∣
(
a′t
b′t

)
−

(
0 1
−1 0

)ph

·

(
at

bt

)∣∣∣∣∣∣
∣∣∣∣∣∣.

In the figure 4, the vectors at are aligned with their neigh-
bors a′t except across two cut edges where it is aligned with
bt′ , so the values unext(h) − uh are constrained to be equal to
uopp(h) − unext(opp(h)) everywhere except the two cut edges where
it is constrained to be equal to vopp(h) − vnext(opp(h)).

Integer map constraint. :
Having a seamless map does not suffice to compute a quadrilat-
eral mesh. To do that we need a so called integer map, which is a

seamless map where all triangle corners that share the same ver-
tex have the same decimal part values for the u and v functions
(but potentially different integer parts as we just want to align
integer isolines).

For each halfedge h, we constrain integer alignment with the
halfedge next(opp(h)) that starts from the same vertex:(

unext(opp(h))
vnext(opp(h))

)
−

(
0 1
−1 0

)ph
(
uh

vh

)
=

(
nh ∈ N
mh ∈ N

)
(3)

Also, when a halfedge is a boundary, we want this halfedge to
be an integer isovalue of either u or v, depending on if the bound-
ary edge is normal to at or bt, such that the output quad mesh
shares the same boundary edges than the input triangle mesh :
uh = unext(h) ∈ N or vh = vnext(h) ∈ N

Quadcover algorithm optimization. :
For each triangle t ∈ T and for each of its halfedges h ∈ H(t),
we want to solve the following optimization problem with the
constraints of equations 2 and 3:

arg min
u,v

∑
t

∑
h∈H(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
(
unext(h) − uh

vnext(h) − vh

)
−

(
< at , gnext(h) − gh >
< bt , gnext(h) − gh >

)∣∣∣∣∣∣
∣∣∣∣∣∣2 (4)

3.3. Quad mesh extraction

Figure 5: Extracting integer isolines of two quantized scalar fields permits to
produce a quadrilateral mesh

The quadcover optimization of previous section permits to ob-
tain two scalar functions u and v such that in each triangle the
gradients of u and v are as close possible to the frame field vectors
at and bt. As u and v respects constraints of equations 2 and 3,
the integer isolines of these functions are forming a quadrilateral
mesh. The goal of this section is to accomplish the quadrilateral
mesh extraction. This is done in a three-step process.

First, we want to locate the intersections between the integer
isolines of u and v and the edges of our input triangular mesh T .
For each halfedge h, if there is an integer value between uh and
unext(h), we place an interpolation point on the edge at the integer
location. We can then plot the integer isolines of u by drawing a
line between each pair of intersection points in each triangle (if
the two points have the same integer value for the u function).
We do the same with the v function.

Second, if a triangle t has an integer line for both u and v func-
tions and these integer lines intersect, we can place a vertex at
the intersection, which belongs to the output quadrilateral mesh.

Third, now that we have placed all the vertices of our quadri-
lateral mesh, we can connect one vertex to its neighbors by re-
cursively following the directions of the integer isolines through
the neighboring triangles, until we reach another vertex.

4

Figure 6: Examples of quadrilateral meshes on surfacic 2D or flat 2D domain,
with feature line alignment constraints.

4. Implementation details for CAD models

Now that we have discussed the overall concept of the algo-
rithm, we will present implementation details that improve the
robustness of the method, specifically when dealing with CAD
models that have feature lines that we want the output quad mesh
to follow (as shown in Fig 6).

4.1. Frame field on low angle corners

Figure 7: A classical framefield on a small angle corner suggest a valence 0
vertex (black dot, left). This frame field cannot be integrated while maintaining
the boundary conditions. To solve this issue, we perform topological operations
on the frame field so that the valence 0 vertex becomes a valence 1 vertex (at the
cost of an interior vertex becoming a valence 3 vertex, represented by a red dot in
the middle). The resulting frame field, with the modified topology, is integrable
and can be used to create a valid quad mesh (shown on the right).

The first implementation of the pipeline described above was
developed in the 2010s [17] and was able to generate high-
quality quad meshes for most typical computer graphics models
(as shown in Fig). However, when working with typical CAD
models (as shown in Fig 6) where we want the output quadri-
lateral model to preserve sharp edges, a problem arises with
low angle corners (as shown in Fig 7). Typically, a frame field
will suggest that a boundary with angle α should be filled with
n = round(2α/π) quadrilaterals. This means that for α < π/4, we
have n = 0, meaning that no quadrilateral is placed in the corner,
resulting in a degenerate output (as shown in Fig 7). To prevent
this from occurring, many options have been explored (such as in
[22], desbruns, [23], directional, directional integ), using metric
changes and/or non-orthogonality. However, in our case where
we have multiple input geometries, we sometimes need to mod-
ify n even if it is not 0 (as discussed in section 5). We therefore
need to use a more general resolution method that acts directly
on the frame field topology. In section 5, we will also see that
this algorithm can be used to modify vertex valences anywhere
in the input model (not just on the boundaries).

As in [20], we refer to the frame field topology as the inte-
ger values ph defined on the halfedge h of a facet t, opposite to
the facet t′. We mentionned these ph values in section 3.2 to ex-
press the constraints of the quadcover algorithm (eq 2 and 3). It
contains information about how to compute the rotation between
two frame field angles θt and θt′ . For example, the rotation be-
tween θt = −π + 10−5 and θ′t = π − 10−5 should be 2 · 10−5,

rather than θ′t − θt = 2π − 2 · 10−5, as the two crosses are nearly
equal and the rotation between them should be close to 0. This
type of problem did not occur with the (X,Y) = (cos 4θ, sin 4θ)
representation, which is π/2 periodic, but now we will switch to
the more intuitive representation of a cross being represented by
the angle of one of its 4 vectors: θt. From the θt angles obtained
through the optimization in subsection 3.1, we define for all pairs
of triangular facets sharing an edge: ph = round

(
θt′−θt
π/2

)
.

This allows us to express the rotation between two adjacent
crosses directly using their angles without encountering period-
icity problems : θt′ − θt + ph · π/2.

To have a smooth frame field (with as little rotation as possi-
ble between neighboring crosses), we can optimize the following
problem according to the fixed topology given by the ph values
(h being the halfedge of t opposite to t′):

arg min
θ

∑
t

∑
t′∈N(t)

|| θt′ − θt + phπ/2||2 . (5)

Performing this new optimization of the θt angles is not very
useful, as we will end up with nearly the same θt values as be-
fore. However, the interesting part is that we can modify the ph
values before reoptimizing the θt values. This will result in a
frame field with a new topology and different singularity loca-
tions (Figures 7, 8, 9).

For two adjacent facets t and t′, we can increase the valence
of the starting vertex of the halfedge h by 1 by increasing ph and
decreasing popp(h) (while keeping ph = −popp(h) true). As a side
effect, the valence of the destination vertex of h will be decreased
by 1.

To solve the problem of a valence of n = 0 on a boundary ver-
tex, we can take a halfedge starting from this vertex, and modify
ph and popp(h) such that the valence becomes 1 (if the boundary
vertex is only adjacent to one facet, we can split the triangular
facet into three triangular facets with a new vertex at the center,
so that the boundary vertex becomes adjacent to two facets). In
this case, the destination vertex of the halfedge h will become
a valence 3 singularity (if its starting valence was 4). This is
an acceptable result because we will be able to obtain a valid
parametrization from this frame field. However, in terms of the
quality of the result, it is often much better to push the singular-
ity further inside the domain. To do this, we can take a sequence
of halfedges between the problematic boundary vertex and an in-
side vertex that will become a valence 3 singularity, and modify
the p values on all of these halfedges. All intermediary vertices
will receive an increase and a decrease in their valences, result-
ing in no valence change, so only the starting vertex and ending
vertex will have a changed valence. Figure 8 shows that choosing
a destination vertex that is a valence 5 vertex make it becomes a
regular valence 4 vertex and improve the structure of the result
quad mesh.

4.2. Implementation details on integration with quadcover
The integration step is the most prone to robustness issues. In

subsection 3.2, we presented the optimization problem, and now
we will focus on how to solve it and obtain scalar fields u and
v such that for each triangle and its three halfedges h0, h1, h2 :{(

uh0

vh0

)
,

(
uh1

vh1

)
,

(
uh2

vh2

)}
expressed in the parametric domain (u, v)

has a strictly positive area: det
((

uh1

vh1

)
−

(
uh0

vh0

)
,

(
uh2

vh2

)
−

(
uh0

vh0

))
> 0

Having only positively oriented triangles in a (u, v) parametric

5

Figure 8: There are various ways to transform a valence 0 corner into a valence 1
corner. One approach is to add a valence 3 vertex near the corner (left), or farther
away from the corner (middle). Another option is to remove a valence 5 vertex
(right). Decreasing a valence 5 in order to increase a valence 0 corner provides
the better structured result.

domain that respect the constraints of equations 2 and 3 guaran-
tees that we will be able to obtain a valid quadrilateral mesh.

The first difficulty of the integration step comes from the con-
straints of equation 3, which add some integer constraints on dec-
imal values (for example, the difference unext(opp(h)) − uh must be
an integer if ph is 0), making the optimization problem being a
mixed integer programming problem. At first, we used to solve
this problem directly with a mixed integer solver [15]. Later, we
found a simpler and more robust solution [14]. The idea is to split
the problem into two parts: first, compute u and v without inte-
ger constraints, and then use a quantization algorithm that takes
this non-integer (u, v) map as input and outputs integer maps with
integer alignment across edges as described in equation 3. The
quantization algorithm that we are using is [?]. It simplifies
the input triangle mesh until only integer variables are remaining
(singularities and boundary vertices), which reduces the prob-
lem to an Integer Linear Programming (ILP) problem. Instead of
solving it with an ILP solver, which can take a lot of time, it uses
a greedy heuristic approach to solve it. While there is no guaran-
tee on the optimality of the found integer values, this approach is
faster compared to ILP resolutions and typically provides valid
integer solutions. From the integer values on the simplified mesh,
we can interpolate decimal values on all the non-integer vertices
of our input triangular mesh and obtain two scalar fields u and
v such that all triangles have a strictly positive area in the (u, v)
parametric domain, with integer alignments across each edge.

The quantization algorithm takes as input a parametric domain
represented by (u, v) in which all triangles have a positive orienta-
tion and conform to the seamless constraints outlined in equation
2. It produces a parametric domain that meets both the seamless
and integer constraints outlined in equations 2 and 3. However,
the optimization method outlined in equation 4 ensures seamless-
ness but does not guarantee positive orientation of triangles. We
will present a new iterative process that will allow us to converge
towards a parametric domain represented by (u, v) that satisfies
the seamless constraints and has positively oriented triangles.

Even without integer constraints, ensuring that all triangles in
the input mesh have a positive area in the (u, v) parametric do-
main from an input frame field topology can be challenging, and
in some cases may even be infeasible (see subsection 4.3). After
producing an integrable frame field topology (for example with
the method described in 4.3), the integration remains a tricky part
because when we solve the optimization problem of equation 4,
we do not have a condition on the positivity of the triangle areas
in the (u, v) parametric domain. However, as the vectors at and
bt of the frame field are positively oriented, the more the gradi-
ents of u and v get closer to a and b, the more the triangles will
be positively oriented in the (u, v) domain. We introduce (µ, υ)
a parametric domain that have for gradient the vectors at and bt
: let h0, h1, h2 being three halfedges in couterclockwise order of

triangle t, we assign the values(
µh0 µh1 µh2

υh0 υh1 υh2

)
=

(
0 < at , gh1 − gh0 > < at , gh2 − gh1 >
0 < bt , gh1 − gh0 > < bt , gh2 − gh1 >

)
(6)

This (µ, υ) is positively oriented by construction, but as no
reason to respect the seamless constraints, as opposed to (u, v).
When the optimization 4 provides (u, v) triangles negatively ori-
ented, our method is to do another optimization with a bigger
weight on the optimization lines that correspond to these nega-
tive triangles. This will make these negative area (u, v) triangles
closer to the (µ, υ) triangles (increasing the chances that they be-
come positive oriented). As a side effect, the (u, v) triangles that
already have positive area will move away from the model given
by the (µ, υ) triangles, potentially becoming negative oriented.
However, even if this happens, the next iteration will increase
their coefficient lines to make them positive again.

This iteration process, although not as reliable as other meth-
ods (e.g. foldover free maps [?]), is sufficient for CAD model
datasets (see section 6) and can easily be applied to handling pos-
itive orientation on multiple input geometries, as opposed to the
previous work.

4.3. Resolving non-integrable frame field topologies

Figure 9: It happens that a perfectly smoothed frame field cannot be integrated,
due to boundary alignment conditions that cannot be satisfied during the integra-
tion process. The issue can be resolved by doing some random modifications
on the framefield topology. Here, two random edges have received a framefield
topology modification, resulting in the creation of two dipoles of valence 3 and
valence 5 vertices.

When the integration process does not produce triangles with
positive area in the parametric domain (u, v) everywhere, it is
likely that a solution does not exist with the given frame field
topology (as shown in Figure 9). To address this issue, we can
alter the frame field topology in order to obtain one that allows
the construction of a valid (u, v) domain.

To modify the topology of the frame field, we use the same
method described in Section 4.1, but with a starting vertex that is

6

located on the interior of the triangular mesh rather than at a low
angle. This results in a decrease in valence for the starting ver-
tex and an increase in valence for the destination vertex. While
it is preferable to select the starting and destination vertices to
produce the highest quality quad mesh possible, this problem is
NP-complete and there is no known heuristic to find even a good
solution.

Therefore, in our automatic method, we randomly select two
neighboring facets (t and t′) of the input triangular mesh and
modify the frame field topology by increasing ph and decreas-
ing popp(h). If the starting and destination vertices of the halfedge
h were not previously singular, they will become valence 5 and
valence 3 vertices, respectively, in the output quad mesh after this
modification. The inclusion of this singularity dipole allows for
greater flexibility in finding a valid (u, v) domain. If this does
not produce a successful outcome, we can repeat the process
with different facets. In general, only a few additional singu-
larity dipoles are necessary to obtain a (u, v) parametric domain
where all triangles have positive orientation, using the integra-
tion algorithm described in Section 4.2 on the new frame field
topology.

Figure 10: In our experiments on the mambo dataset (described in subsec-
tion 6.1), we found that adding a single randomly placed dipole of singularity
(valence 3 vertex in red, valence 5 vertex in blue) was sufficient to solve the mod-
els that had non-integrability problems.

5. Multiple geometries in input

The previous section describes a pipeline that takes a triangu-
lar mesh as input and produces a high-quality quadrilateral mesh
with the same boundaries and feature edges. During a defor-
mation simulation, the positions of the points in the input mesh
change over time, providing information about the nature of the
deformation that the quad mesh must handle. If the initial quad
mesh is not able to handle the full deformation simulation be-
cause quadrilaterals become degenerate, we can modify the ini-
tial quad mesh to ensure it remains valid when the same defor-
mations are applied.

In the following sections, we will consider multiple geometries
as input. For example, if we use a deformation simulation to
generate these geometries, we will have the positions of each
point in the input triangular mesh for all steps of the simulation.

5.1. Iterative improvement of a quad mesh
Our goal is to perform a numerical simulation of large defor-

mation with a software using quadrilateral meshes. To do that,
we need to generate a quadrilateral mesh that will remain of high

quality when deformed by the simulation. To achieve this, we
will repeatedly alternate between generating a quadrilateral mesh
and running a simulation with it. The more accurately the quadri-
lateral mesh fits the deformations, the more precise the simula-
tion results will be. On the other hand, the more accurate the
simulation is, the more it will provide input geometries that can
be used to create quadrilateral meshes that better fit the defor-
mations. Precisely, if a simulation does not produce the desired
results when using a particular quadrilateral mesh, we can divide
the mesh into a triangular mesh and use the positions of its ver-
tices at each simulation step to recalculate a quadrilateral mesh
that will maintain a high level of quality with the deformations
deduced from these input point positions.

This multi-step quadrilateral meshing algorithm is as follows:
T ← triangular mesh with initial geometry
Q← quad mesh from quadcover algorithm on T
while The numerical simulation applied on Q fails do
T ← Q splited into a triangular mesh
Gs ← point positions of T for all simulation steps

achieved
Q← polygeometries quad meshing algorithm on T,Gs.

end while

5.2. Topological problems of a frame field

Figure 11: After the deformation of the boundary, the number of quadrilaterals
adjacent to the boundary vertex become incompatible with computing a valid
quadrilateral mesh.

In Subsection 4.1, we mentioned a topological error that can
occur with a frame field when dealing with low-angle corners.
The solution was to avoid valence n = 0 on all boundary edges.
When dealing with multiple geometries as input, valence n = 1 or
n = 2 can also lead to degenerate quadrilaterals when the bound-
ary points are moving (see Figure 11). We do not encounter this
problem with a single geometry as input because a frame field al-
ways places n = ⌊2α/π⌋ when facing a α-angle corner due to the
boundary alignment constraints. With multiple geometries, we
have multiple boundary alignment constraints that we may not be
able to satisfy simultaneously. In this case, we apply the bound-
ary constraints of the initial geometry and optimize the frame
field as described in Subsection 3.1. If we detect that on the kth
geometry of our inputs, the angle αk of a boundary angle suggests
a valence greater than the one suggested by the initial geometry:

7

⌊2αk/π⌋ > ⌊2α0/π⌋, we perform a topological change (as in Sub-
section 4.1) such that the valence becomes n = ⌊2αk/π⌋.

As a result, we have a new frame field topology that takes into
account the highest boundary angles among all the geometries to
ensure we have enough degrees of freedom to deform the bound-
ary edges when starting a new simulation with a better-fitted quad
mesh (see Figure 12 and 13).

5.3. Frame field model for each geometry
The final step is to smooth the frame field (using Equation 5)

for each geometry k with the new topology ph and the boundary
constraints given by the point positions of geometry k, denoted as
gk

h. This results in multiple parametric domains (µk, υk) for each
geometry k of the input, given by the frame field of the geometry:(
µk

h0
µk

h1
µk

h2

υk
h0
υk

h1
υk

h2

)
=

(
0 < ak

t , gk
h1
− gk

h0
> < ak

t , gk
h2
− gk

h1
>

0 < bk
t , gk

h1
− gk

h0
> < bk

t , gk
h2
− gk

h1
>

)
(7)

With a valid frame field topology and multiple models of the
(µk, υk) parametric domains (one per input geometry), we can
start the integration step, which aims to be valid according to all
the (µk, υk) models.

5.4. Polygeometries quad meshing algorithm
As a reminder, the (µk, υk) parametric domains given by the

frame fields are not directly usable for computing quadrilaterals
because they do not satisfy the constraints in Equations 3 and 2.
We will use them to construct a model (µ, υ) that can be used as
input to the algorithm in Subsection 4.2 to compute a parametric
domain (u, v) that satisfies these constraints.

Our approach is to initialize (µ, υ) to the mean of the (µk, υk)
values at all corners of the input triangular mesh. The goal is to
ensure that all triangles in the input mesh have positive area in
the (µ, υ) domain for all geometries. In rare cases, this may not
be directly the case, so we can try to weight the geometries that
are encountering problems more heavily in the mean sum. We
never faced a case where it was not possible to have all triangles
with positive orientation in the (µ, υ) domain for all geometries,
but it could happend and be solved by increasing the quality of
the input triangulation.

Now we assume that all triangles are positive oriented in the
(µ, υ) domain for all geometries, we can follow the same inte-
gration process as in Subsection 4.2: we compute (u, v) to be as
close as possible to (µ, υ) while respecting the integration con-
straints. If some triangles have negative area in the (u, v) domain
for some geometries, we increase the weights of these triangles
in the least square optimization to make (u, v) closer to (µ, υ). All
triangles will end up being positive oriented in the (u, v) domain
for all geometries.

At the end of these steps, we have a (u, v) parametric domain
that we can use as input to the quantization algorithm described
in subsection 4.2 before using the quad meshing algorithm de-
scribed in subsection 3.3 to obtain a quad mesh that is adapted to
the multiple geometries of our deformation simulation.

6. Results

In this paper we (1) presented a complete pipeline to generate
a quadrilateral mesh from a triangular mesh, with tips to improve
the robustness of the algorithms of the state of the art without too
much increasing the implementation complexity (section 3 and
4). Then we (2) presented other modifications to the state of the

art algorithms to compute a quad mesh that remain of high qual-
ity despite deformations deduced from a triangular mesh with
vertices that have evolving positions in time (section 5).

6.1. Robustness test of (1)

Our implementation of (1) is a C++ program that consists of
1000 lines of code and does not use any external libraries. We
conducted experiments on two datasets: a flat 2D dataset contain-
ing approximately 1000 models (cited in reference [flat2Dds])
and a 3D surfacic dataset containing approximately 150 models
(cited in reference [mambo]). In all cases, we were able to suc-
cessfully generate a valid quad mesh in less than a minute.

To demonstrate the significance of the improvements de-
scribed in section 4, we conducted additional experiments on the
mambo dataset where we excluded one or more of these improve-
ments. When we omitted all of the improvements, the success
rate was 30%. Excluding only improvement 4.1 resulted in a
success rate of 50%. Omitting only improvement 4.2 resulted in
a success rate of 40%. Finally, excluding only improvement 4.3
resulted in a success rate of 95%.

Based on these results, we can conclude that our quad meshes
have singularities corresponding to the frame field topology of
improvement 4.1 in 95% of cases. This means that the quadrilat-
eral meshes we generate have a low number of irregular vertices
(with valence , 4). In the remaining 5% of cases where the
frame field topology of improvement 4.1 is not sufficient to com-
pute a valid (u, v) parametric domain, improvement 4.3 modifies
the frame field topology to a valid one. The addition of less than
3 randomly placed dipoles of singularities suffices to pass the 5%
remaining cases. Even in these cases, the resulting quadrilateral
meshes still have a low number of irregular vertices and are of
high quality (see Figure 10).

6.2. Test of (2) with the solver Numea

To evaluate the effectiveness of generating a quad mesh that
is optimized for deformation simulation, we conducted tests us-
ing Numea, a software specialized in solving nonlinear elasticity
simulations, which are known to be prone to convergence prob-
lems. We obtained 5 rubber seal simulations from Hutchinson,
a company that performs these simulations for their customers.
These simulations involve simulating the deformation of flat 2D
sections of rubber seals.

Normally, it takes Hutchinson an average of 3 weeks to gen-
erate a quadrilateral mesh that can withstand the simulation. For
two of these 5 challenging tests (see Fig 14 and 15), we were
able to complete the deformation simulation using the quadrilat-
eral mesh generated with sections 3 and 4 on the initial geometry
of the 2D domain. For two other tests (see Fig 16 and 17), we
were able to complete the deformation with fewer than 3 steps
of alternating between quad meshing with section 5 and trying a
simulation with the newly created mesh.

For the last simulation, we were unable to complete the de-
formation simulation without a human intervention. Indeed,
this simulation required tweeking of simulation parameters to be
completed due to convergence issues that were not related to a
low quality element in the input mesh. In this case, our meshing
method provided no advantage over other methods.

7. Conclusion

In this paper, we present an improved version of the quadcover
algorithm, which is more robust when applied to CAD models.

8

Figure 12: Optimal singularity positions for an initial geometry can lead to poor
quality quadrilaterals after a deformation.

Figure 13: Using all the geometries from the previous iteration of the failed simu-
lation automatically places 4 adjacent quadrilaterals at the boundary point where
the deformation is most pronounced.

Figure 14: The method outlined in this paper for generating quad meshes auto-
matically produced a high-quality mesh that sustained the 100 iterations of a high
deformation simulation (as shown on the right). In contrast, a mesh generated us-
ing a Delaunay triangle merging method failed to converge at iteration 63.

We have found that this algorithm has significant time-saving po-
tential for industrial use in generating quadrilateral meshes for
deformation simulation. However, like other automatic quadri-
lateral meshing methods, it may sometimes require manual ad-
justments when used for nonlinear simulation. One advantage of
our frame field method is that the initial quadrilateral mesh has
a simple combinatorial structure with few singularities, which
makes it easier to make local modifications, either during the
meshing process by changing the frame field topology (we can
displace singularities this way), or after the meshing process on
the output quad mesh. When simulating a 2D domain with mul-

Figure 15: The quadrilateral meshes we propose have a boundary alignment that
makes them inherently resistant to compression simulations.

Figure 16: When the same deformation simulation is run on two different quad
meshes, the results can be very different. Due to convergence issues, the seal in
the first case has broken through its holder. In the second case, the seal has bent
to fit normally in its holder thanks to the automatic addition of boundary valence
3 vertices on the red dots.

tiple materials, we can treat the material boundaries as feature
edges and have the edges of the generated quadrilateral mesh
automatically follow these edges (see Fig 18). However, our
method does not offer an automatic way to apply different siz-
ing to different regions of the same model, which is a frequent
request in the case of simulation. To do this, manual intervention
is required, either by placing dipoles of singularities at desired
locations during the meshing process (as shown in Figure 19) or
by directly modifying the output quadrilateral mesh, as described

9

Figure 17: Top: a quadrilateral mesh generated from the initial 2D domain. Mid-
dle: quadrilateral mesh derived from all geometries of the first failed simulation,
Bottom: quadrilateral mesh derived from all geometries of the failed second sim-
ulation. The bottom quadrilateral mesh passed the simulation due to better over-
all geometry and more adapted boundary valences than the previous meshes (red
squares).

Figure 18: The method presented in this paper generates quadrilateral meshes
that align naturally with material frontiers by treating them as boundaries.

in [24].

Figure 19: Local refinement thanks to the placement of two dipoles of singulari-
ties (two vertices of valence 3 and two vertices of valence 5).

References

[1] J. Zhu, M. Gotoh, Automatic remeshing of 2d quadrilateral elements and
its application to continuous deformation simulation: part i. remeshing al-
gorithm, Journal of Materials Processing Technology 87 (1-3) (1999) 165–
178.

[2] S. J. Owen, M. L. Staten, S. A. Canann, S. Saigal, Q-morph: an indirect
approach to advancing front quad meshing, International journal for nu-
merical methods in engineering 44 (9) (1999) 1317–1340.

[3] C. Lee, S. Lo, A new scheme for the generation of a graded quadrilateral
mesh, Computers & structures 52 (5) (1994) 847–857.

[4] T. D. Blacker, M. B. Stephenson, Paving: A new approach to automated
quadrilateral mesh generation, International journal for numerical methods
in engineering 32 (4) (1991) 811–847.

[5] B. P. Johnston, J. M. Sullivan Jr, A. Kwasnik, Automatic conversion of tri-
angular finite element meshes to quadrilateral elements, International Jour-
nal for Numerical Methods in Engineering 31 (1) (1991) 67–84.

[6] J.-F. Remacle, F. Henrotte, T. Carrier-Baudouin, E. Béchet, E. Marchandise,
C. Geuzaine, T. Mouton, A frontal delaunay quad mesh generator using
the linf norm, International Journal for Numerical Methods in Engineering
94 (5) (2013) 494–512.

[7] D. Arnold, D. Boffi, R. Falk, Approximation by quadrilateral finite ele-
ments, Mathematics of computation 71 (239) (2002) 909–922.

[8] N.-S. Lee, K.-J. Bathe, Error indicators and adaptive remeshing in large
deformation finite element analysis, Finite Elements in Analysis and Design
16 (2) (1994) 99–139.

[9] A. Srikanth, N. Zabaras, An updated lagrangian finite element sensitivity
analysis of large deformations using quadrilateral elements, International
Journal for Numerical Methods in Engineering 52 (10) (2001) 1131–1163.

[10] H.-C. Ebke, D. Bommes, M. Campen, L. Kobbelt, Qex: Robust quad mesh
extraction, ACM Transactions on Graphics (TOG) 32 (6) (2013) 1–10.

[11] D. Bommes, T. Lempfer, L. Kobbelt, Global structure optimization of
quadrilateral meshes, in: Computer Graphics Forum, Vol. 30, Wiley On-
line Library, 2011, pp. 375–384.

[12] R. Viertel, B. Osting, An approach to quad meshing based on harmonic
cross-valued maps and the ginzburg–landau theory, SIAM Journal on Sci-
entific Computing 41 (1) (2019) A452–A479.

[13] F. Kälberer, M. Nieser, K. Polthier, Quadcover-surface parameterization
using branched coverings, in: Computer graphics forum, Vol. 26, Wiley
Online Library, 2007, pp. 375–384.

[14] D. Bommes, M. Campen, H.-C. Ebke, P. Alliez, L. Kobbelt, Integer-grid
maps for reliable quad meshing, ACM Transactions on Graphics (TOG)
32 (4) (2013) 1–12.

[15] D. Bommes, H. Zimmer, L. Kobbelt, Mixed-integer quadrangulation, ACM
Transactions On Graphics (TOG) 28 (3) (2009) 1–10.

[16] M. Campen, D. Bommes, L. Kobbelt, Quantized global parametrization,
Acm Transactions On Graphics (TOG) 34 (6) (2015) 1–12.

[17] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, D. Zorin,
Quad-mesh generation and processing: A survey, in: Computer Graphics
Forum, Vol. 32, Wiley Online Library, 2013, pp. 51–76.

[18] G. Marcias, N. Pietroni, D. Panozzo, E. Puppo, O. Sorkine-Hornung,
Animation-aware quadrangulation, in: Computer Graphics Forum, Vol. 32,
Wiley Online Library, 2013, pp. 167–175.

[19] J. Zhou, M. Campen, D. Zorin, C. Tu, C. T. Silva, Quadrangulation of
non-rigid objects using deformation metrics, Computer Aided Geometric
Design 62 (2018) 3–15.

[20] N. Ray, B. Vallet, W. C. Li, B. Lévy, N-symmetry direction field design,
ACM Transactions on Graphics (TOG) 27 (2) (2008) 1–13.

[21] D. Muller, F. Preparata, Finding the intersection of two convex
polyhedra, Theoretical Computer Science 7 (2) (1978) 217–236.

10

https://www.sciencedirect.com/science/article/pii/0304397578900518
https://www.sciencedirect.com/science/article/pii/0304397578900518

doi:https://doi.org/10.1016/0304-3975(78)90051-8.
URL https://www.sciencedirect.com/science/article/pii/

0304397578900518

[22] D. Desobry, Y. Coudert-Osmont, E. Corman, N. Ray, D. Sokolov, Design-
ing 2d and 3d non-orthogonal frame fields, Computer-Aided Design 139
(2021) 103081.

[23] D. Desobry, F. Protais, N. Ray, E. Corman, D. Sokolov, Frame fields for
cad models, in: International Symposium on Visual Computing, Springer,
2021, pp. 421–434.

[24] M. Lyon, D. Bommes, L. Kobbelt, Cost minimizing local anisotropic quad
mesh refinement, in: Computer graphics forum, Vol. 39, Wiley Online Li-
brary, 2020, pp. 163–172.

11

https://doi.org/https://doi.org/10.1016/0304-3975(78)90051-8
https://www.sciencedirect.com/science/article/pii/0304397578900518
https://www.sciencedirect.com/science/article/pii/0304397578900518

	Related work
	Typical quadrilateral mesh generation methods for numerical simulations
	Quadrilateral mesh generation for computer graphics animations

	Constraints of simulation of high deformation on the input quad mesh
	Simulation method of our study case
	Importance of a well conditioned stiffness matrix
	Guidelines for the construction of a quadrilateral mesh adapted to this type of simulation

	Quadcover for quadrilateral mesh generation
	Frame field computation
	Integration with quadcover
	Quad mesh extraction

	Implementation details for CAD models
	Frame field on low angle corners
	Implementation details on integration with quadcover
	Resolving non-integrable frame field topologies

	Multiple geometries in input
	Iterative improvement of a quad mesh
	Topological problems of a frame field
	Frame field model for each geometry
	Polygeometries quad meshing algorithm

	Results
	Robustness test of (1)
	Test of (2) with the solver Numea

	Conclusion

