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Abstract

We present a method for enforcing the boundary singularity graph of a frame field before optimizing it. By controlling the singularity
indices at the boundaries, this technique can generate hexahedral meshes with specified boundary edge valences. In situations where
feature lines in a CAD model intersect at sharp angles, the traditional approach of aligning the frame field with surface normals
leads to non-meshable boundary singularities. Instead, we align the frame field with a precomputed direction field that is specifically
designed to produce the valid boundary singularities given in input. We present an algorithm to generate this direction field and provide
heuristics to obtain the necessary input boundary singularities. We demonstrate the effectiveness of this approach in preventing the
collapse of sharp features through a standard hexahedral meshing pipeline, and we show that modifying the boundary singularities of a
frame field can also enhance the performance of current frame field optimization techniques in constructing a valid interior singularity
graph.

Keywords: Geometry processing, Frame field, Hexahedral remeshing

1. Introduction

Volume meshes are widely used in industry because they ac-
curately represent the geometry of complex shapes and are suit-
able for finite element analysis (FEA) and computational fluid
dynamics (CFD) simulations. Tetrahedra and hexahedra are the
most commonly used elements for meshing volumes. While au-
tomatic generation of tetrahedral meshes has reached a level of
maturity that allows its usage in industrial contexts, hexahedral
mesh generation still requires heavy user interaction. One key
difference between these two elements is that hexahedral meshes
are more structured and have relatively few irregular edges. An
edge is regular if it is adjacent to exactly 4 hexahedra inside the
mesh and 2 at the boundary. The set of irregular edges forms a
singularity graph whose properties have been extensively stud-
ied [1, 2] but a full characterization of this graph is still lacking.

In this paper, our goal is to improve the usability of the global
parametrization method (or frame field based method [3]) for
converting a tetrahedral mesh into a hexahedral mesh. This
method decomposes the meshing problem into three steps: 1)
generating an orthogonal frame field to fix the element ori-
entations and the singularity graph, 2) computing the global
parametrization such that the coordinate gradients follow the
frames directions, and 3) using a ”quantization” algorithm to
assign integer values to the isovalues of the parametrization’s
boundaries and singularities, which allows the extraction of a
hex-mesh. One weakness of this method is that a frame field
singularity graph may not always be transposable to a hex-mesh
singularity graph.

A 3D orthogonal frame is typically represented by a set of
three orthonormal directions. The key idea is that a frame has
the same symmetry as a cube. Thus, it is an excellent proxy for
determining a singularity graph. However, only a subset of all
possible frame field singularity graphs can be used for hexmesh-
ing [1, 2]. In fact, most frame field generation techniques con-
strain one direction of the frame to be normal to the boundary
and optimize for smoothness inside the shape [4, 5]. As a conse-
quence, the boundary edge singularity indices are simply set as a
rounding of the dihedral angle of the boundary faces. Typically,

if the dihedral angle φi j of a boundary edge i j falls within the
range of π − π/4 and π + π/4, a smoothed frame field that aligns
with the boundary normals snaps it to a π angle and treats the
boundary edge as regular. Instead, if the dihedral angle falls out-
side of this range, the edge is considered singular, and its index is
determined by the nearest multiple of π/2. However, when deal-
ing with CAD models that have feature lines meeting at acute or
strongly obtuse angles, singularity indices determined by round-
ing the geometric dihedral angle often result in invalid singular-
ity graphs. A particularly telling example is seen in geometries
with dihedral angles smaller than π/4 (Figure 1). On the one
hand (Figure 1, left), a frame field aligned with the boundary
normals snaps it to a 0 angle, resulting in a valence 0 edge that
cannot be meshed. On the other hand (Figure 1, right), a frame
field aligned with a carefully chosen vector field snaps it to a π/2
angle, which corresponds to a valence 1 edge in the output hexa-
hedral mesh. This demonstrates that we can influence the bound-
ary edge singularities of a frame field by adjusting its boundary
alignment constraints. Furthermore, modifying the singularity
graph on the boundaries also affects the singularity graph within
the model, which can be beneficial.

In this paper, we propose a simple algorithm to generate frame
fields with prescribed edge valences on boundary edges. The
key idea is to constrain the boundary frame field to align with
a direction v which may differ from the boundary normal n so
that the rounding leads to the desired edge valence. Then, we
use the symmetric frame field optimization of Ray et al. [5] to
smoothly interpolate the field and obtain the internal singularity
graph. If this frame field has the desired singularities, it cannot
be used directly for meshing as it is not aligned with the bound-
ary. Therefore, we compute a non-symmetric frame field with the
same singularity graph but, this time, aligned with the boundary
normals. The hexmesh is extracted from this field using the state-
of-the-art method [6, 7].

We demonstrate that our method can be used to address the
problem of meshing CAD models with feature lines intersecting
at sharp angles (Fig 2). In addition, we propose heuristics for
choosing edge valences in order to avoid the limit cycle problems
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Figure 1: In the case of meshing a low-angle edge, an orthogonal frame field
aligned with the surface normals satisfies the two constraints with opposite direc-
tion vectors of a frame (top, left), leading to a non-meshable valence 0 edge. We
compute new direction constraints such that a frame field aligns with our direc-
tions with two orthogonal vectors of the frame (top, right), resulting in a meshable
valence 1 edge. The global smoothness of our direction constraints enables the
production of a valid interior singularity (red line, bottom right) using a frame
field optimization method [5].

Figure 2: Because the slope’s angle is too low, an orthogonal frame field fol-
lowing the boundary normal directions fails to separate the slope’s end from the
slope’s support, resulting in a degenerated result (left). Instead, our direction con-
straints obtained with our method separate the slope and its support with a 90◦

angle, resulting in a valence 3 edge at the slope’s end. The red line corresponds to
a necessary valence 3 interior singularity line produced by frame field optimiza-
tion [5] with our direction constraints.

described in [2].
To summarize, our algorithm follows the steps:

1. Compute new boundary constraints v (Sec. 4);
2. Generate a smooth frame field with boundary direction con-

straint v using Ray et al. [5];
3. Compute a non-symmetric frame field with fixed singulari-

ties and normal boundary constraints (Sec. 3);
4. Extract a seamless parametrization [6] and a hexahedral

mesh [7].

2. Related work

2.1. Singularity graphs
Pietroni et al. [3] define the singularity graph of a hexahedral

mesh as the interior edges that do not have a valence of 4, as well
as the boundary edges that do not have a valence of 2. The struc-
ture of a hexahedral mesh is determined by the singularity graph;
the simpler the singularity graph, the more structured the hexa-
hedral mesh. The benefit of frame field based methods is that
they produce hex meshes with the simplest singularity graphs. If
local characterization of an hexmesh singularity graph is well un-
derstood [8, 9], fewer works have attempted to find global char-
acterization [1]. To the best of our knowledge, the only way to
check that a given graph corresponds to an hexmesh is by explic-
itly building the mesh. This is very impractical and is a major

challenge for hex meshing methods. Therefore, singularity graph
modification techniques [8, 9, 1] are limited to local corrections
of common defects. These methods cannot be used to prescribe
a boundary singularity graph because this may significantly al-
ter the inner graph. Frame field generation from fixed singular-
ities [1, 10] requires a complete and valid singularity graph as
input. Hence, it is not possible to utilize these methods with just
an input boundary singularity graph.

2.2. 3D frame field generation

The goal of frame field optimization is to generate a valid inte-
rior singularity graph by interpolating the input boundary align-
ment constraints. The most common representation of an orthog-
onal frame uses 9 coefficients in the spherical harmonic decom-
position [4, 5]. Many methods have been proposed to compute
smooth frame fields. They often rely on three steps [4, 8, 5]: first,
a loose convex relaxation is used as an initialization step; second,
each set of 9 coefficients is projected in the space of orthogonal
frames; and third, an optional non-convex smoothing procedure
is used.

Many other algorithms are possible. Palmer et al. [11] sug-
gest alternating between a diffusion step and a projection step to
obtain a smoother field. Vaxman et al. [12] uses a Boundary
element method to interpolate boundary frames to the interior.

Unfortunately, the necessary conditions exposed in [6] for a
frame field singularity graph to be compatible with a hexmesh
are extremely challenging to be used in a constructive way. Thus,
there are no available algorithms guaranteeing the validity of a
frame field singularity graph. In particular, all these methods
for interpolating and smoothing orthogonal direction fields fail to
properly handle acute dihedral angles at the boundary. In prac-
tice, the boundary singularity indices of the final hexmesh are
determined by rounding the dihedral angle.

Desobry et al. [13] is one of the only options available that can
correctly handle feature lines intersecting at acute angles. The
idea is to replace the 3D frame field by a field of three indepen-
dent directions, which are represented by 14 spherical harmonic
coefficients. In contrast to orthogonal frames, these fields can
utilize non-orthogonality to impact the output valence. However,
aligning with the boundary normals still precludes the creation
of boundary edge valences that deviate significantly from what
the surface dihedral angles suggest. Moreover, this approach is
computationally expensive as it requires solving a challenging
non-convex optimization problem.

3. Hexahedral meshing pipeline

In this section, we present our pipeline for frame field genera-
tion. Our method allows us to generate hexahedral meshes with
specified boundary edge valences by aligning a frame field with
the direction vectors from Sec. 4 instead of the surface normals
(Sec. 3.2). As a result, our frame field has the desired bound-
ary singularity graph, but its orientation on the boundary is not
ideal for extracting high-quality hexahedrals aligned with the in-
put surface. To resolve this, we perform a second optimization to
realign the frame field with the surface normals while keeping its
singularities fixed (Sec. 3.3). With a valid frame field topology
and a new geometry aligned with the surface normals, standard
hexahedral meshing methods can be used, as outlined in Sec. 3.4.
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3.1. Notations

We have, as input, a tetrahedral mesh (V, E, F,T ) where we
denote V the set of vertices, E the set of edges, F the set of tri-
angles, and T the set of tetrahedra. The boundary of the mesh
is a triangle mesh (Vb, Eb, Fb) with Vb the set of boundary ver-
tices, Eb the set of boundary edges, and Fb the set of boundary
triangles.

We denote ni as the normal vector of boundary facet i ∈ Fb,
and ei j as the edge separating a facet i from one of its three neigh-
bors j ∈ N(i).

3.2. Frame field topology

Each tetrahedron i ∈ T is endowed with three orthonormal
vectors stored as columns of the rotation matrix Ei ∈ SO(3). We
use the algorithm of Ray et al. [5] to compute a smooth symmet-
ric frame field with boundary alignment constraints. A symmet-
ric frame is represented by 9 spherical harmonic coefficients and
then reprojected in the space of orthogonal frames.

The transformation to go from one frame i ∈ T to an adjacent
frame j ∈ T can be decomposed into the rotation Ri j ∈ SO(3)
and the matching matrix gi j ∈ SO(3):

Ei = Ri jE jgi j. (1)

The matching matrices gi j take into account the change of sym-
metry and belong to the orientation-preserving octahedral sym-
metry group Γ, the cardinal of Γ is 24. The rotation of the frame
Ri j accounts for the part of the rotation that is independent of the
symmetry jump. Both matrices are heavily correlated because,
for each matching matrix, the rotation Ri j is uniquely defined.

As noticed in [1], the singularity graph is fully characterized
by the frame matching matrices g. Thus, to obtain meshable
singularities, we must correctly identify the symmetries between
adjacent frames. In practice, given a symmetric frame field, the
matching matrices are unknown and are computed in the least
squares sense:

gi j = arg min
g∈Γ

∥∥∥Ei − E jg
∥∥∥2

F , (2)

implying that Ri j should be as close as possible to identity.
However, at the boundary and even more so along a feature

edge, the frames are fixed, and the matchings are heavily con-
strained by the alignment with both the normal direction and the
feature edge direction. More precisely, for two adjacent bound-
ary facets i, j ∈ Fb, one column of Ei must be colinear to ni and
one column of E j must be colinear to n j. Also, as Ei, E j satisfy
Eq. (1), the rotation Ri j aligns the column of E j colinear to n j
with a column of Ei (or its opposite). If these column directions
are the facet normals ni and n j (or −ni and −n j), then i j is a reg-
ular edge of valence 2. More generally, the valence ki j of the
output hexmesh at the boundary edge i j is directly related to the
rotation Ri j (and to the matching gi j) by the formula:

ki j = 2 −
2
π

atan2

⟨ni × (Ri jn j),
ei j∣∣∣ei j

∣∣∣ ⟩, ⟨ni,Ri jn j⟩

 . (3)

In the case of a very acute dihedral angle (as in Fig. 1), the
matching given by Eq. (2) imposes that the rotation Ri j should be
as close as possible to identity. Hence, the normals on both sides
of the hard edge will match as opposite and, as stated by Eq. (3),
imply that this edge is adjacent to zero hex.

To avoid these catastrophic rounding errors, we constrain the
symmetric frame field to be aligned to a direction v at the bound-
ary such that the matching matrices computed with Eq. (2) pro-
duce the desired edge valences. The computation of the boundary
field v is detailed in Sec. 4.

3.3. Smooth frame field with fixed matching

Now that we have a frame field E with the correct matching
matrices, we would like to realign the boundary frames with their
corresponding surface normals. To do so, we need to identify, for
each boundary frame Ei, the column vector that aligns with the
direction vi and transfer this constraint to the normal vector ni.
Thus, a boundary-aligned frame Ē must satisfy the constraint:

n⊤i Ēi = v⊤i Ei, ∀i ∈ Fb.

With these boundary constraints, we would like to find the
smoothest frame field whose matching matrices are the gi j ob-
tained with Eq. (2):

minĒ
∑

i∈T
∑

j∈N(i)

∥∥∥Ēi − Ē jgi j

∥∥∥2
F ,

subject to: n⊤i Ēi = v⊤i Ei,∀i ∈ Fb.
(4)

The optimization problem in Eq. (4) does not impose that Ēi
is a rotation matrix. Thus, we solve a Procrustes problem at each
tet to project the matrix in the space of rotation matrices using a
singular value decomposition.

3.4. Hexahedral meshing method

The boundary aligned frame field Ē and its matching matrices
g can be used to generate hexmeshes with the standard frame
field based pipeline [3].

The CubeCover algorithm [6] produces seamless parameter-
izations by using the three gradient directions provided by the
vectors of an input frame field. To achieve this, the algorithm
generates three scalar fields, which correspond to a volume pa-
rameterization. The scalar fields are linear per tetrahedron, and
the relationship between fields across interface facets is defined
by ”matching matrices” [6]. By using the matching matrices gi j,
CubeCover generates parametrization with the same singularity
graph as the input frame field. Once an integer seamless pa-
rameterization is obtained, a hexahedral mesh is extracted using
Hexex [7].

The images of the hexahedral meshes in this paper are dis-
played using hexalab [14], which shows both the surface of the
hexahedral mesh and the interior singularity lines. These lines
are colored red or green, depending on whether the interior sin-
gularity edge has a valence of three or five. Since no postpro-
cessing smoothing is applied to the hexahedral meshes after ex-
traction with hexex, the red and green lines seen in the images
correspond directly to the interior singularity graph of the frame
field generated from the direction constraints of Sec. 4. Hence,
these lines follow the edges of the input tetrahedral mesh.

4. Computing boundary constraints from boundary valences

In practice, choosing the closest matching matrix, as in Eq (2),
is equivalent to picking edge valences by rounding of boundary
dihedral angles. For a dihedral angle φi j deduced from bound-
ary alignment constraints of a frame field, the associated edge
valence with the pipeline described in Sec 3 is round(2φi j/π). In
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Figure 3: The dihedral angle φi j and the geometrical edge valence ki j are calcu-
lated using the two facet normals ni and n j adjacent to the boundary edge i j.

this section, our goal is to find a new field of boundary direc-
tion constraints v so that the rounding of φi j leads to the user-
prescribed boundary valences ki j. To do so, we rely on greedy
optimization to minimize two objectives, one constraining the
dihedral angles and the other imposing to preserve the boundary
curvature.

Because of the rounding, we want to be certain that the max-
imum angle deviation from the target dihedral angle is smaller
than π/4. For this reason, we do not use a least squares objective
but rather a minimization of a maximum angle deviation.

The discussion of how to choose the ki j valences is differed to
the Section 5.

4.1. Energies
We have as input a tetrahedral mesh whose boundary facets

are triangles; we use the same notations as Sec 3.1. We denote as
φ(ni, n j) the dihedral angle between two planes whose normals
are ni and n j and intersect along the edge ei j.

φ(ni, n j) = π − atan2

⟨ni × n j,
ei j∣∣∣ei j

∣∣∣ ⟩, ⟨ni, n j⟩

 .
Figure 3 illustrates all of these variables.

At a triangle i, we would like our new direction constraint v to
define a dihedral angle matching the boundary valences ki j:

δdi (v) := max
j∈N(i)

∣∣∣φ(vi, v j) − ki jπ/2
∣∣∣ . (5)

This objective alone is insufficient because it is entirely in-
dependent of the surface curvature. For a sphere, minimizing
Eq. (5) would lead to a constant vector field v from which it
would be impossible to generate a valid inner singularity graph.
Thus, we also desire that the new boundary field v stays as close
as possible to the initial curvature. With this goal in mind, we
define, at each half dual edge i j of the boundary, a pair of ideal
normals n̄i j and n̄ ji. Both normals should be close, in the least
squares sense, to the original normals but also satisfy the dihe-
dral angle constraint. More formally, our pair of ideal normals is
the solution to the optimization problem:

minn̄i j,n̄ ji∈R3 |n̄i j − ni|
2 + |n̄ ji − n j|

2

subject to: φ(n̄i j, n̄ ji) = ki jπ/2
|n̄i j| = |n̄ ji| = 1

(6)

Let Ri j be the rotation of angle π − ki jπ/2 and of axis the edge
vector ei j, we use it to find the solutions of Eq. (6) and obtain our
ideal half-edge normals:

n̄i j =
ni + Ri jn j

|ni + Ri jn j|
.

The smoothness energy measures the maximum angular dis-
tance to our ideal half-edge normals:

δni (v) := max
j∈N(i)

arccos
(
v⊤i n̄i j

)
. (7)

The angle deviation at triangle i is defined as the maximum of
the angular distance from the target dihedral angles (Eq. (5)) and
the angular distance from the ideal half-edge normals (Eq. (7)):

Ei(v) := max(δdi (v), δni (v)).

The maximum angle deviation among all triangles i for a given
set of direction vectors v is denoted as follows:

E(v) := max
i∈Vb
Ei(v).

Our objective in the following subsection Sec. 4.2 is to find
a set of direction vectors v that minimizes E(v). The dihedral
angle rounding guarantees that a smooth orthogonal frame field
constrained by the directions v has a boundary singularity graph
corresponding to the input boundary edge valences ki j whenever
E(v) < π/4 (see Sec. 6.2).

4.2. A greedy optimization method

Since we would like to minimize a non-smooth objective func-
tion, we rely on a simple greedy algorithm.

We initialize the directions vi to be equal to the normal vectors
ni and we iteratively replace vi by the unit vector ui which mini-
mizes the angle deviation Ei(v) when v j are considered constant
for all j , i. The vector ui is determined by the neighboring vec-
tor directions at the time of modification. Its exact computation
is detailed in Sec. 4.3.

After the vector vi is modified, we need to update the vectors
of the neighboring triangles. Thus, our greedy algorithm uses a
queue to determine the facet indices that must be updated. First,
the queue is filled with all facet indices. Then, while the queue
is not empty, we pick and remove the front index. If a vector ui
lowers the current facet energy, we replace the direction vector vi
with ui and add all the adjacent facets to the queue (if they are not
already in). This procedure is summarized in the pseudo-code of
Alg. 1.

Algorithm 1 Greedy boundary vector optimization

v← initial normal vectors of boundary facets.
Q← boundary facet indices
while Q is not empty do

i← Q.pop front()
u←MinFacetDirection(i)
if E(u) < E(v) then

vi ← ui

for all j ∈ N(i) do
Q.push( j)

end for
end if

end while

4.3. Minimization of a single vector

In order to use Alg. 1, we need to solve the subproblem of
minimizing E(v) for the variable vi while considering all other
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Figure 4: In the initial step, the direction vector that minimizes Ei is chosen
among 26 direction vectors, each represented by points with integer coordinates
at the surface a cube centered on the origin with a size of 2. Then, the size of
the cube is doubled to identify the optimal direction vector (displayed in red,
right) from the integer points that surround the previous (red, left) solution. This
procedure is repeated 9 times to reach a direction vector that is nearly optimal.

components fixed. Our energy only depends on the angle be-
tween vectors, so the length of vi does not change the value of
E, only the direction matters. Thus, we use an iterative search-
ing algorithm by sampling directions of integer coordinated on
the surface of a centered cube of edge length 2n for increasing
n ∈ N.

We start with a cube of length n = 2 resulting in 26 sampled
directions. At the first stage, we exhaustively test all directions
and keep the one with the lowest energy. In the next iteration,
we double the size of the cube and test only the 8 (or 6 at a cor-
ner) adjacent directions with integer coordinates, as illustrated in
Fig. 4. We again keep the best candidate. We iterate this proce-
dure 9 times.

A cube of length 2p has a total of 24×4p+2 sampled directions.
Instead of testing all directions, our dichotomy method only tests
9k + 26 direction vectors after p iterations to find an approxima-
tion of a local minimizer vi. In practice, we stop at p = 9. This
procedure is summarized in the pseudo-code of Alg. 2.

5. Different strategies to determine boundary edge valences

In this section, we provide three heuristics for choosing bound-
ary edge valences. Sec. 5.1 focuses on reproducing the bound-
ary edge valences suggested by the surface normals (see Fig 3)
except on low-angle edges to avoid the failure case ki j = 0.
However, low-angle edges are not the only cases in which the
boundary naturally creates a non-meshable configuration. In
Sec. 5.2, we present a heuristic that uses the surface geome-
try to solve non-orthogonality problems that are not related to
low-angle edges. The Sec. 5.3 focuses on CAD models whose
geometry cannot be used to determine a valid boundary singu-
larity graph. These are frequently associated with cases of ex-
treme non-orthogonality of feature edges, and we show how to
solve such cases using edge valences given as input. Finally, in
Sec. 5.4, we show examples of CAD models in which modifying
the boundary singularity graph is optional but helps the frame
field optimization method [5] to find a valid interior singularity
graph.

5.1. Low-angle edges

If the input tetrahedral mesh has dihedral angles φi j less than
π/4, an orthogonal frame field aligned with surface normal di-

Algorithm 2 Iterative searching algorithm

function MinFacetDirection(v, i)
N = 2
st ← (−1,−1,−1)
end ← (1, 1, 1)
for iter ← 0 to 10 do

pt ←MinPointOfCubeSurface(v, i, st, end,N)
N ← 2 · N
st ← 2 · pt − (1, 1, 1)
end ← 2 · pt + (1, 1, 1)

end for
return normalizedVec3(pt)

end function
function MinPointOfCubeSurface(v, i, st, end,N)

u← v
pt ← (1, 0, 0)
for x← stx to endx do

for y← sty to endy do
for z← stz to endz do

if max(|x|, |y|, |z|) == N/2 then
ui ← normalizedVec3(x, y, z)
if Ei(u) < Ei(v) then

vi ← ui

pt ← (x, y, z)
end if

end if
end for

end for
end for
return pt

end function

Figure 5: An orthogonal frame field following the boundary surface normals near
a low-angle edge considers the edge as an output valence 0 edge, which leads to a
degenerancy result (left). We solve it by computing new direction constraints that
act as if the low-angle edge was in fact a π/2 angle edge, which an orthogonal
frame field has no problem dealing with (right).

Figure 6: Adding twist during extrusion permits to generate a lot of non-
orthogonality in many different directions. Our method constructs a hexahedral
mesh result as if the extrusion were done without twist.
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Figure 7: When a dihedral angle is close to pπ/2+π/4 with p ∈ N, we remark that
choosing either k = p or k = p + 1 results in a valid boundary singularity graph,
while the other does not. To obtain the above results, our heuristic is to choose
the edge valence k = p + 1 if the dihedral angle φ is greater than pπ/2 + 0.9π/4.

rections has a boundary singularity graph corresponding to a va-
lence ki j = 0 edge in the output hexahedral mesh, which is not
meshable (see Fig. 5, left).

We propose a simple heuristic consisting of assigning an edge
valence of ki j = 1 whenever the dihedral angle φi j is smaller than
π/4. For a boundary edge i j ∈ Eb, we compute the edge valences
as:

ki j = max
(
round

(
2φi j

π

)
, 1

)
.

As a result, direction constraints v computed from these va-
lences (Sec 4) eliminate low-angle issues while not creating new
ones, as illustrated in Figure 5 (right) and Figure 6. This means
that using these v directions constraints is always preferable to
using surface normal n directions constraints.

5.2. Ambiguous dihedral angles

Many of the problems we encounter with the MAMBO dataset
[15] are caused by non-orthogonality issues on edges with dihe-
dral angles φ ≈ pπ/2 + π/4, p ∈ N. In this case, choosing the
value k = p can lead to boundary edge valences that are incom-
patible with hex meshing. This meshing problem can be solved
by systematically increasing the edge valence by one whenever
the dihedral angle is too close to π/4 modulo π/2:

ki j = max
(
round

(
2φi j

π
+ 0.05

)
, 1

)
.

Figure 7 shows 5 hexahedral meshes successfully generated
thanks to this simple heuristic.

5.3. CAD models with user prescribed edge valences

For hexahedral meshing of CAD models, the user can also add
to the feature edge description the desired edge valence. By do-
ing so, our method can construct boundary direction constraints
according to these input valences. If we achieve a maximum de-
viation angle E(v) smaller than π/4 (Sec. 6.2), we ensure that a
frame field following these direction constraints will have a valid

Figure 8: In the case of extreme non-orthogonality of feature edges in CAD
models, it is challenging to determine geometrically the feature edge valences.
To obtain these results, we prescribed the boundary valences to the feature edge
descriptions of the input models.

Figure 9: Replacing all valence 3 edges by valence 2 edges can transform non-
meshable singularity graphs into valid ones.

boundary singularity graph (corresponding to the valid edge va-
lences given on feature edges). Figure 8 shows examples of CAD
models where we need the boundary edge valences in input as
our heuristics fail to produce valid meshes.

5.4. Modification of inner singularity graphs
Reberol et al. [2] illustrate several configurations where com-

puting a smooth frame field leads to non-meshable singularity
graphs. They propose a solution to this problem by changing the
geometry of the input tetrahedral mesh. Rather than changing the
geometry of the input, we simply replace valence 3 edges with
valence 2 edges. For the models in Figure 9, we used:

ki j = min
(
round

(
2φi j

π

)
, 2

)
,

on all boundary edges.
Figure 9 shows three examples in which we avoided the prob-

lem of invalid singularities by simply changing the ki j values on
some boundary edges. However, these modifications to boundary
singularities have a negative impact on the Hausdorff distance be-
tween the input tetrahedral mesh and the output hexahedral mesh.
Moreover, the hexahedral mesh partially loses feature edge align-
ment.
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Figure 10: To compute a valid hexahedral mesh, a prescribed edge valence of 4
on the slopes intersection edges is required. Starting from edge interior angles of
4.37 (left) and 3.87 (right), the orthogonal frame field optimization [5] produces
a valid interior singularity graph as if the interior angles of the slopes intersection
edges were close to 2π. Our algorithm reduces the maximum deviation angles
δmax on the boundary direction constraints from 1.91 (left) and 2.41 (right) to
0.38 and 0.48.

6. Results

We tested our algorithm on the 74 ”basic” models of the
MAMBO dataset [15]. Figure 11 shows the computation times
with respect to the number of tets for each model in our dataset.
Out of the three main steps of our algorithm (computation of new
boundary constraints, generation of a symmetric frame field, and
realignment with the boundary normals), the computation of a
symmetric frame field with Ray et al. [5] is the most expensive.

The computation of the boundary constraints from edge va-
lences relies on the greedy optimization described in Section 4.
Although we have no proof of convergence or a bound to the opti-
mal solution, this scheme works well in practice. Figure 12 com-
pares, for all our models, the maximal angle deviation E evalu-
ated with the initial boundary normals and with the vector field
v, output of Algorithm 1. We always succeed in lowering the
angle deviation well below the bar of π/4, thereby avoiding the
rounding error.

6.1. Comparisons with [13]

Desobry et al. [13] propose a representation of non-orthogonal
direction fields that can solve some meshability issues induced
by strongly non-orthogonal corners. They rely on a smooth
non-convex optimization process, initialized with an orthogonal
frame field computed with Ray et al. [5].

If this method provides an alternative solution to boundary
hexmeshability, it is not as flexible as our method and can only
fix a smaller range of problems. For example, when the dihedral
angle φi j of a boundary edge is in the range

[
pπ/2, (p + 1)π/2

]
, a

hexahedral mesh computed from a non-orthogonal direction field
will have a boundary edge valence of p or p + 1, depending on
how the field is constrained with the surface’s normal directions.

Our method can generate boundary edge valences with arbi-
trary values. Figure 10 shows double slopes models with in-
tersection edges having an interior angle in the range [π, 3π/2].
With prescribed edge valences of 4 on the intersection edges, our
method builds direction constraints that make possible the com-
putation of a valid hexahedral mesh. A non-orthogonal frame
field aligned with the normal directions cannot produce this valid
boundary singularity graph because the intersection edges can at
best be of valence 3.

In terms of performances, Desobry et al. [13] report a compu-
tation time roughly 1000 times slower than an orthogonal frame
field generation. As demonstrated by Figure 11, our method is
much faster as the computation time is largely dominated by the
orthogonal frame field computation.

Figure 11: Computation time of the three steps of our frame field generation algo-
rithm: computation of boundary constraints, orthogonal frame field optimization
and frame field realignment. Our algorithm adds a very small time overhead to
standard frame field generation methods.

Figure 12: Comparison between the initial energy and the energy after optimiza-
tion. On ”B” models of the mambo dataset [15] and with input edge valences
obtained with the heuristic of Sec 5.1, we obtain directions v such that the max-
imum deviation angle E(v) is below π/4 after optimization. This means that the
boundary singularity graph of our frame field corresponds to the input edge va-
lences.

Figure 13: Our method produces boundary constraints that result in a boundary
edge valence of 5, simulating a volume surface that self-intersects (interior angle
of 5π/2 > 2π) around the edge of the two slopes. The initial deviation angle of
E = 2.2 is reduced to E = 0.46 after optimization.

7



6.2. Failure cases
The feature edge valence ki j of a hexahedral mesh produced

using the method described in Sec. 3 depends on the dihedral an-
gle φ(vi, v j) of the two direction constraints of the adjacent facets
i and j as outlined in Sec. 4.1. The goal of Equation (5) is to
reach a value of φ(vi, v j) which is at worst at a distance of π/4 of
ki jπ/2. However, as φ(vi, v j) is an angle between 0 and 2π, our
target edge valence cannot exceed 4. To overcome this limita-
tion, for valences ki j ≥ 5, Equation (5) must be modified to take
into account the lowest value modulo 2π:

δdi (v) = max
j∈N(i)

min
p∈Z

∣∣∣φ(vi, v j) − ki jπ/2 + 2pπ
∣∣∣ .

This modification is demonstrated in Figure 13 where a bound-
ary edge valence of 5 is desired and achieved. In this case, the ini-
tial maximum deviation angle E = 2.2, which corresponds to an
initial dihedral angle of 5π/2−2.2, is reduced to E = 0.46 < π/4.
However, the higher starting maximum deviation angle is, the
more difficult it becomes to reduce it to a value below π/4. For
this reason, valences strictly larger than 6 may be difficult to re-
alize.

7. Conclusion

In this paper, we present a method for computing frame field
with prescribed boundary singularities by modifying boundary
alignment constraints. These fields can then be used in the stan-
dard hexmeshing pipeline. Simple heuristics can prevent non-
meshable configurations that are recurrent in CAD models, both
at the boundary and inside the mesh. Our algorithm is simple and
adds little computation overhead to standard orthogonal frame
field generation algorithms.

The biggest limitation of our method is that we only rely on
heuristics for choosing boundary valences. We do not provide
a complete characterization of meshable boundary singularities.
Moreover, there is no assurance that the interior singularity graph
is also valid. The invalid singularity graphs exhibited in Sec. 5.4
are common in CAD models, but they cannot always be treated
by simply changing the boundary singularity graph.
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